
LOGIC OF COMPUTERS GROUP

Lni

H W

nO

ID0 t

Department of Computer and Communication Sciences

2080 Frieze Building -

The University of Michigan

Ann Arbor, Michigan 48104

wo

CIEN

THE UNIVERSITY OF MI C l I GAN
COLLEGE OF LITERATUPRE, SCIENCE, AND TilE ARTS

Computer and Communication Sciences Department

CONVERGENCE PROPERTIES OF SIMPLE
GENETIC ALGORITHMS

by

Albert D. Bethke
Bernard P. Zeigler
David M. Strauss

July 1974

Technical Report No. 159

with assistance from

National Aeronautics
and Space Administration
Grant No. NGR-23-005- 602

Washington, D.C.

I. BACKGROUND AND INTRODUCTION

The long range goal of our research project has been to answer the

following questions:

1) How broad is the domain of useful application of genetic direct

search algorithms (employing techniques suggested by natural

adaptive systems)?

2) Should one general form of algorithm be applied in all situations

or are different configurations or parameter settings appropriate

in different environments?

Our previous research [see Bosworth 1972, Foo 1972, and Zeigler 1973] was

devoted to answering the more particular question: How well could genetic

algorithms preform in comparison to standard direct search techniques current-

ly available? We studied the cases of unimodal, multirodal, and noisy functions.

Also, several versions of genetic optimization algorithms were constructed

during the exploratory phase of our investigation. Many variations were

incorporated and tested in the possibility that they could prove essential

to algorithm performance. As could be expected, this led eventually to

a complex software package.

The question which we studied during the final year of our research

was: What are the essential parameters determining the behavior of genetic

algorithms and what values should be assigned to these parameters for optimum

performance? So, during the final phase of the project the algorithm was

refashioned into a much more simple and elegant form. This final version

contains only the basic features which our experimentation with earlier

versions suggested to be essential. As a consequence, there were only 8

parameters which could be varied to control the performance of the final

optimization program.

1

2

Having thus reduced the parameter space to an (almost) manageable size,

we made a large number of canputer runs while systematically varying the

parameter values. Most of the results stated later in this report are

based on the progress curves (function value of the best point versus the

number of function evaluations) obtained from these runs. Other results are

based on the variability of the population as the run progresses.

II. ALGORITHM DESCRIPTIONS

Our optimization algorithm belongs to a class of algorithms known as

genetic algorithms. Instead of sampling several points about a base point

to compute an approximate gradient and follow it, genetic algorithms explore

the space by searching out the best hyperplanes using a "population" of many

points and the genetic operators crossover and mutation and possibly others.

The basic paradigm goes like this:

0. Generate an initial population of strings (using a random number

generator) -- each string (also called an individual) represents a

point in the objective function's domain.

1. Use genetic operators to produce new individuals and add them to

the population. Usually the strings chosen to be operated on

(crossed over or mutated or whatever) are chosen randomly but the

choice is biased according to the utility (function value) of

each individual. That is, the best string has the highest probability

of being chosen to participate while the worst string is least likely

to be used.

2. Use some selection routine to reduce the size of the population back

to the initial size. Generally the decision of which strings to

keep is also biased according to the function values.

3. Repeat steps 1 and 2 until some termination criterion is met.

In our particular algorithm, the basic activity cycle consists of the

following:

1. Decide whether to use crossover or mutation this time. (The para-

meter XPROB is the probability of doing crossover, and 1-XPROB

is the probability of mutation.)

2. Perform the chosen operation.

3

4

MAIN PROGRAM

Read parameters

Generate initial (random) population

Print initial infomation

Choose Operator
(XPROB

Call crossover routine Call mutation routne

Do a selection if yes
size > MXSTR or based

on SPROB

no
Call selection routine

Do I/0? es

no Call I/ routine

no Stop? yes : Print fia t

CStop

5

3. Decide whether or not to reduce the population down to the initial

size and carry out the selection if that is the decision. (The

parameter SPROB is the probability of using the selection routine

at this point in the cycle.) If the population has reached or

exceeded the maximum size allowed for this run (MXSTR), then selec-

tion must be performed. (The initial size of the population is given

by the parameter NSTR.)

As noted above, each string represents a point in the objective func-

tion's domain. However, genetic algorithms are best suited to working on

strings with only a small number of possible values (alleles) at each posi-

tion. That is, if the domain space consists of roughly 1000 points, it would

be better to represent these points using "binary strings" of length 10

than by using "decimal strings" of length 3. Since we are working with

functions of several real variables, we construct a uniform grid on the domain

space and each coordinate of the function is allowed to take on only a small

number of values -- the parameter NALEL in our programs gives this number.

(The grid could be refined by using 2 or more positions per coordinate to

encode the domain points as strings.)

The range of values allowed along each dimension in the domain space

was limited according to which function was being optimized. For the "stan-

dard" function, i ix , each coordinate was restricted to the range 0 to 4.
i

This range was partitioned into n (the value of NALEL) equal segments and

the different alleles were associated with the midpoint of each segment.

Thus, if there are 2 possible values for each position in a string, they

correspond to x i values of 1 and 3. Similarly, if there are 4 alleles,

then the possible xi values are .5, 1.5, 2.5, and 3.5. For Wood's function,

the domain was a hypercube with a range of -2 to 2 in each of the 4 dimensions.

Thus an individual is a string of integers each of which lies between 0 and

NALEL-1. The genetic operators work on these strings in the following ways.

Crossover:

Two strings are chosen from the current population. The first string

is chosen randomly with the probability of selecting a particular individual

being proportional to that individual's utility. The second individual is then

chosen from the remaining population in one of two possible ways: 1) the

second string may be selected using the same scheme as for the first, or

2) the second string may be chosen so that each of the remaining strings is

equally likely to be picked. We call the first method "best with best" and

the second method "best with random." The parameter MATER controls which

method is used and is fixed for the entire run, but may be changed for

different runs. (All of our parameters are set at the beginning of a run

and must be held constant throughout that run.)

A crossover point (pivot point) is now cosei. If the string has

length n (the parameter NCOOR holds this value), then there are n-l possible

pivot points (the interstices), each of which is equally likely to be chosen

as the actual pivot point. The strings are then "broken" at the pivot point

and recombined so that each of the two new strings consists of the starting

portion of one of the original strings followed by the terminal segment of

the other. For example, given the two strings (a,b,c,d,e) and (f,g,h,i,j)

and choosing the pivot point to be between the third and fourth position,

we get (a,b,c,i,j) and (f,g,h,d,e) after crossover. The two original indivi-

duals are retained in the population -- they are not destroyed by crossover.

The two new individuals are added to the current population.

7

CROSSOVER

st
Choose 1~ individual randomly

but biased by utilities

best with best best with random
Which crossover method?

(MATER)

Choose 2- individual biased Choose 2i- individual using
by utilities uniform distribution

Choose pivot point

Perform the actual

crossover

Return

8

Mutation:

One individual is chosen from the current population. This choice

is random, but biased according to utilities. For each position along the

string, a decision is made whether or not to change the value at that pos-

ition. The probability of making a change is controlled in our program by

the parameter PMUTE and is fixed throughout a given run. If the value at

the present position is to be changed, then each of the other possible values

is equally likely to replace it. Again, the new individual is added to the

population, and the original individual is also preserved.

As an example, suppose that the string (k,l,m,n,o) has been chosen to

undergo mutation. If PMUTE = .5, we have a 50-50 chance of changing k to

a new value, 50-50 chance of changing 1 to a new value (independent of

whether or not k has changed), etc. So the expected number of changes is

2.5 (PMUTE times the length of the string). The odds of making no changes

are 1 in 32. The probability of changing all the coordinates is also 1/32.

So the new string-would most likely have 2 or 3 changes, say (k,l',m',n,o)

or maybe (k',l,m',n',o). If the length of the string were 50, instead of

5, then the expected number of changes would be 25 and the chances of leaving

the string unchanged would be only (.5) 50 10 - 1 5 . On the other hand, if

the length were 5 but PMUTE were .25, then the probability of changing k

would be .25, the probability of changing 1 would be .25 also, etc. Now

the expected number of changes would be 1.25 and the probability that the

new individual is the same as the original individual is (.75)5 z .24.

So with PMUTE = .25, we would most likely find 1 coordinate changed, but

quite often none or two would be changed.

9

MUTATION

Choose random individual
(biased by utilities)

i

tate position i? yes Choose new allele
(PIMUTE) (different from

original allele)

no

i , i+1

o i > NCOOR? es Retur

10

Finally, we followed the basic paradigm when reducing the population

back to the original size, except that we always kept the best individual.

The other individuals which survived the population reduction were chosen

randomly with the probability of retaining a particular individual propor-

tional to that individual's utility.

SELECTION

Retain best individual

Eliminate Strings
biased by low
utility until
size = NSTR

_IIIII

III. DESCRIPTION OF EXPERIMENTS AND RESULTS

We will use the term run to refer to a single execution of our

program on the computer using one set of parameters and terminating when

the stopping condition is satisfied. Experiment will mean a set of runs

which use the same data and parameter values, except that each run uses a

different random number seed. Since the algorithm is stochastic, we will

usually refer to the values of different statistics for an experiment,

meaning the average over the runs which make up that experiment, rather

than referring to a particular run. As noted above, we used the "standard"

function
NCOOR

f(x) ix.
i=l

in all but a few of our experiments. In the remaining experiments, the

objective function was Wood's function:

f(x) = 100(x2-x2) + (1-xl2 + 90(x -x22

+(1-x 3 2 + 10.1((x2-1) 2 + (x4-1)2

+ 19.8 (x2-1) (x4-1)

Actually, Wood's function was to be minimized rather than maximized,

so we used -f(x) instead of f(x) and still maximized the objective function.

Unless stated otherwise, the descriptions which follow are of experiments

in which the "standard" function was to be maximized.

There are eight parameters which control our algorithm and which were

varied from experiment to experiment:

1. NALEL -- the number of alleles (possible values) at each position.

NALEL must be a positive integer greater than one (with a

maximum value of about 15,000 on the computer we used).

11

12

2. NCOOR -- the number of dimensions of the domain space; also the

length of the strings. NCOOR must be a positive integer

not greater than 50.

4. MXSTR -- the maximum size of the population. When the population

exceeds this size selection is inmmediately performed.

MXSTR is an integer which should be at least as large as

NSTR but no greater than 98.

5. XPROB -- the probability of choosing to use crossover rather than

mutation during any particular time through the basic

activity cycle.

6. MATER -- this parameter determines whether crossover is done on a

best with best basis or a best with random basis.

MATER = 1 for best with best

MKIAER = 2 for best with random

7. PMUTE -- the probability of changing each coordinate of a string

which is being mutated. PMUTLE is a real number between 0

and 1 inclusive.

8. SPROB -- the probability of performing a selection, used each

time through the main loop. SPROB is also a real number

in the range 0 to 1.

The parameter space is quite large so we decided to restrict attention

to the case of 2 alleles (NALEL = 2). We also limited ourselves to SPROB

values of 1 and 0 -- either constant selection or else no selection until

the population reached maximum size. We used 3 different initial population

sizes: 10, 30, and 50 individuals. In these cases we chose maximum

populations of 20, 60, and 98 individuals respectively. (98 was used since

we had storage space for only 100 strings and a crossover could be performed

when the population contained 99 strings, leading to 101 individuals before

13

the selection routine was called in.) With SPROB = 0 the population was

thus allowed to approximately double in size before being cut back to the

initial size. With SPROB = 1, the population was never more than 2

individuals larger then the initial population. Finally, we limited

ourselves to optimizing the "standard" function on 10, 30, and 50 coordinates

only.

Our first set of experiments consisted of using only crossover (XPROB = 1

-- no mutation -- and only using the best with best method for choosing

the pairs to be operated on. There were 5 runs in each experiment and

18 experiments in this set (3 values of NCOOR, 3 pairs of NSTR, MXSTR

values, 2 values of SPROB -- 3 x 3 x 2 = 18). The statistic values were

plotted for each run and the deviation between the runs in an experiment

was found to be fairly small (5 - 10%). In all of these experiments,

saturation (as measured by statistics 3,4 and 51) was rapid. The time

IThree measures of population variability were devised and recorded for each
run. The first is simply the variance of the function value over the popula-
tion. (It should be noted that although there are many different points
with the same function value, we rarely observed more than 2 distinct points
with the same function value in the population at any one time.) The second
measure is a bit more complicated and is intended to measure the number of
distinct individuals and so should compensate for the decrease in the varianc
of the function values caused because the points are close together even
though distinct. This measure is given by the formula:

S(/n. - 'n.3/2

(ni) 3/
2 I

i= i=1

where I is the number of distinct points, and n. are the number of occurrence
of each of the I distinct points. For example, suppose there were 10 points,
4 of which take on one value, 3 take on another value, and the other 3 take
on a third value. Then I=3, nl=4, n =3 and n3=3. The third measure is the
average of the second measure applied to each coordinate over the coordinates
As it turned out, these three statistics were very similar and so we simply
used the variance of the function value as our variability measure.

14

required before the process stagnates increases with population size, though

not linearly, and is considerably shorter when selection was done constantly

than when the population was allowed to double before selection. (See

tables 1, 2, and 3, and figure 1.)

The population's performance, as measured by either the utility of the

best individual or the average of the utilities of the entire population,

improved as the population became larger. The rate of increase in performance

was greatest at the beginning of each experiment (as one would expect) and

the initial rate was greater for small populations than for large populations.

The initial rate of improvement was also greater when constant selection was

used rather than minimal selection. (See tables 1, 2 and 3, and figure 2.)

It should be noted that the average utility is not a monotone increasing

function of the number of function evaluations. Rather, the average utility

seems to follow the best function value but lagging by a "random" amount

(see figure 3). In fact, while the best value increases monotonically, it

does not do so smoothly, but makes little jumps or occasionally larger jumps

and remains constant between. All graphs givert in this report are thus

"idealizations" of the actual graphs obtained from the plotter.

We were also interested in the effect the mutation operator has on

optimization of the function, and the role it plays in averting and/or

delaying saturation. To this end, we ran three sets of 9 experiments, with

XPROB = .5, .7, .9 (so that the probability of applying the mutation

operator at any given time was .5, .3, and .1, respectively). The other

parameters varied in each set of experiments were NCOOR (which took on

values of 10, 30, 50) and PMUTE (which took on the values .1, .3, and .5).

We applied the algorithm to an initial population of 10 strings which

was allowed to double before selection was used (SPROB = 0). Since

the variations between the runs in each of the previous experiments

was rather low, we decided to try only 3 runs per experiment. Again the

15

variance between the runs which made up an experiment was quite low

(5 - 10%), so we felt that 3 runs per experiment was probably sufficient.

In these experiments, the population maintained a large variability

(as measured by any of statistics 3, 4, or 5) even after progress toward

the optimum (statistic 1) had stopped. For a fixed value of XPROB, the

variability of the population increases as PMUTE increases. And for a

fixed value of PMUTE, the variability decreases as XPROB increases. (See

table 4.) In terms of finding the optimal function value, we found that

PMUTE = .1 was always the best setting for PMUTE (or at least as good as

any other value of PMUTE), regardless of the values of the other parameters.

With PMUTE a .5 performance was always markedly worse than with PMUTE = .1.

The performance with PMUTE = .3 was sometimes as poor as with PMUTE = .5

but sometimes was not noticeably different from PMUTE = .1. (See tables

5, 6, and 7.) It should be noted that no matter what the value of PMUTE

(or, for that matter, XPROB), a better function value is achieved when the

mutation operator is used in conjunction with the crossover operator than

when crossover is the only operator (compare tables 2 and 3 against tables

6, 7).

We also ran two sets of experiments using XPROB = .5, and PMUTE = .05

and .2 in an effort to discover if PMUTE = .1 was truly the optimal setting.

The differences between these sets of experiments were rather small. Using

PMUTE = .05 was slightly better on 30 coordinates than PMUTE = .1, but

slightly worse on 50 coordinates. PMUTE = .2 was always slightly worse

than PMUTE = .1. Thus it seems that PMUTE = .1 is a near-optimal setting

in these cases, if not truly optimal.

We also investigated the effect of using constant selection with both

operators. To this end, we ran 3 sets of experiments using XPROB = .5 in all

of them and PMUTE = .1, .3, .5 in each set of experiments respectively.

16

These sets of experiments were compared to those made previously in which

all parameters were the same except for the SPROB value. Using constant

selection improves the performance with respect to both the final function

value attained and the number of evaluations required to achieve the final

value (except for one case, see table 12). This use of constant selection

also decreases the population variability.

Our next series of experiments were made using only the mutation oper-

ator -- no crossover. We used values of .1, .3 and .5 for PMUFE. We used

minimal selection (SPROB = 0) and populations of 10-20 and 30-60 strings.

The standard function was optimized for 10; 30, and 50 coordinates. The

experiments using PMUTE = .3 always reach their final function value quicker

than those with PMUTE = .1. An equal or better final value is attained

with PMUTE = .1. The only case where PMUTE = .3 seems better by both

criteria is on 10 coordinates. (See tables 8, 9, and 10.) This is not

surprising since the expected number of coordinates to be changed with PMUJTE

PMUTE = .1 is only 1. Hence, many strings which undergo mutation are not

changed at all, thereby completely wasting one function evaluation (probability

of no change is .910 -. 35 so about 35% of the "mutations" do nothing).

With PMUTE = .3 it is much less frequent that a string is left unchanged

(.710 " .028, or about 3% of the time).

As our next set of experiments, we tried using the "best with random"

type of crossover. We first tried crossover only with populations of 10-20

and 30-60 strings (SPROB = 0). Then we tried both operators (XPROB = .5,

PMUTE = .1 and PMUTE = .3) on 10-20 and 30-60 strings. The performance and

variability curves are almost identical to those of the corresponding

experiments with the "best with best" type of crossover. It seems to make

no difference whatsoever which type of crossover is used.

Our final group of experiments was done using Wood's function as the

17

objective function. Here we departed from thd 2 allele case and allowed

400 values at each position. The possible values for each coordinate ranged

from 0 to 4 in increments of .01 -- the optimum was (1,1,1,1). We used

initial populations of 10 and 50 strings, allowing the population to double

before selection. We tried mutation only with PMUTE = .5. We also tried

crossover only both the "best with best" and the "best with random" methods.

Last, we tried both operators together (XPROB = .5, PMUTE = .5) using

"best with best" in some experiments and "best with random" in others. The

results are somewhat inconclusive. In terms of the final function value:

1. Large populations are better than small ones, except for mutation

only experiments.

2. "Best with random" is usually, but not always better than "best

with best".

3. The combination of mutation and crossover is usually better than

either mutation only or crossover only.

See table 13 for more details. The performance curves for these

experiments are not nearly so smooth as those for any of the experiments

using the standard function. It is very difficult to talk about the rate

of approach to the final value since the curves look like jagged staircases

(see figure 4) and since the variance between runs was rather high.

The variability of the population does not seem to decrease very much

using both operators or using only mutation, but it does decrease somewhat

using only crossover. The variability fluctuates a great deal with mutation

only and is relatively stable with both operators or with crossover only.

The variability is somewhat lower with mutation only than with both operators

but higher than for crossover only.

18

IV. ANALYSIS AND CONCLUSIONS

1) Throughout all the experiments, the progress curves appear to be

roughly an exponential increase toward the final value of the form

V(n) = (V 0-Vf)e-rn + Vf where

V(r.) is the mean value achieved after n sample evaluations

V0 is the mean value at the beginning of a run

Vf is the mean value which appeared to be asymptotically being

approached

r is the exponential decay factor

Thus the properties of most interest in the study of convergence viz. the

final value converged to, and the rate of convergence could be simply

described by the parameters Vf and r respectively according to our results.

2) Increasing the population size always increases Vf and decreases r.

(See figures 5 and 10.)

3) The effect of using constant selection rather than minimal selection is

usually to increase Vf but sometimes to decrease Vf (see figures 5 and 6).

In all cases, the rate of convergence is increased, although not always

significantly. The change in r may be due primarily to the fact that the

mean population size (mean over time) is reduced by using constant selection.

Also, it should be noted that the selection process tends to reduce the

variability of the population by discarding those individuals which are

much different from the best string since such individuals generally have

low utility (see figure 7). So the use of constant selection should cause

faster stagnation, which it does.

4) Using the crossover operator only -- without mutation -- gives progress

curves which have relatively low values of Vf, but have relatively high

19

values of r ("relative" to using mutation only or using both operators

together). (See figures 8 and 9.) The reason for the rapid decrease in

population variability when using crossover only is probably due to the

following. Early in the run, a string is created which is far superior to

the remainder of the population. It is, thereafter, very likely that this

string will be chosen as one of the two strings to be crossed over almost

every time a crossover is done. The result of these crossovers is to intro-

duce more strings which are similar to the best string (one of the crossover

products always has more than half of its alleles the same as the best

string). These strings have better function values than most of the

population, so that selection tends to favor keeping many very similar, if

not identical, strings. This effect then snowballs as the population becomes

dominated by these very similar strings. As shown by Holland [see Holland

19731, the proportion of a given schema should increase exponentially at

a rate proportional to its utility relative to the average utility of the

population. This suggests that the schema represented by the best string

in the initial population should come to dominate the population rather

quickly and that progress must halt (unless new schema can be introduced by

some other method, such as mutation) when that happens.

This analysis predicts that the "best with random" method should lead

to a smaller r and less rapid decline in population variability. This

does not seem to be the case. Indeed, looking at the experiments using

Wood's function, we see that the variability is much lower using "best

with random" than for "best with best" -- just the reverse of what one would

expect. On the other hand, the value of Vf is better for "best with random'"

It should be noted that the runs on Wood's function were terminated before

the variability dropped to zero and so we may be analyzing only the initial

20

portion of the progress curves.

The fact that crossover leads to rapid saturation of the population

suggests an obvious change to the selection procedure -- keep only 1 copy

of each string.' If no duplicates are permitted, then the variability

must remain high. Such a change would greatly increase the running time of

the selection procedure (selection already consumes most of the running

time of the optimization program) and would probably decrease the rate of

convergence. It should, however, increase the final value obtained.

5) Using mutation only -- no crossover -- avoids the problem of saturation

and keeps the variability fairly high. The rate, r, is generally lower than

for crossover only (with PMUTE = .5 the rate is about the same). The

same tradeoff occurs between V and r -- changing PMUTE increases one but

decreases the other (see fimure 11).

Intuitively one would expect that using very small values of PMUTE

would lead to rather slow progress since the mutation process would often

leave a string unchanged. Using very large values of PMUTE should lead to

some rapid initial improvement followed by very slow progress (if any)

because all new strings would be much different from the current strings

and after getting about half the coordinates correct, no more progress

could take place. Somewhere in between the progress should be reasonably

quick and yet still give good final values. It seems that when the expected

number of changes is rather small (on the order of 1-3), then the performance

should be very good. The fact that PMUTE = .3 and PMUTE = .1 both achieve

the same Vf on 10 coordinates, but that PMUTE = .1 is superior on 30 and

50 coordinates tends to confirm this hypothesis. Also, experiments with

PMUTE = .5 are always markedly worse than those with PMUTE = .1.

Most of our results using only mutation can be explained on the basis of

the following simple model. Let N be the number of coordiantes (the length

21

of a string). Assume that the strings in the population have the last M

coordinates correct and the first N-M incorrect (in fact, the strings

usually do have the last several positions correct and the first ones are

relatively random -- since the function weights the last ones more heavily).

Then if the expected number of changes is fairly small we can say that:

Probability of improvement - prob. of a single change in N-M region

and no change in M region

N-M-1 M= (N-M)pq *q

N-l= (N-M)pq

where P = PMUIE, q = 1-PMUTE

So the expected time to M+l correct coordinates is 1(N-M)pq

And the expected time to reach M correct coordinates starting from M0

correct initially is

M
nM 1 N NM

Mo (N-M)pqN- pq

And so the progress curve should be described by an equation of the form

N-1
M(n) = (M0-N)e-npq +N.

N-lSo the rate of progress should be given by pq . When N is larger
N-l

than 3 or 4, q will determine the progress rate. So larger q should

mean faster progress. In fact this is true -- see figure 11 -- the exponen-

tial rate of approach at the end of the run is greater for PMUTE = .1

(or q = .9) than for PMUTE = .3 (or q = .7). Also, larger N should mean

slower rate of appraoch for the same value of PMUTE -- this effect is shown

by figures 12 and 13.

22

Nearly all runs start with about N/2 correct coordinate values in the best

few strings. If we view the mutation as operating on 2 portions of the string

-- the good and the bad portions -- then we have, for each mutation, a

sequence of N/2 Bernoulli trials on each portion of the string. The

binomial probability distributions associated with the number of changes

in each portion may be approximated by normal distributions with

mean H and variance (again p= PMUTE). The net improvement is then

the number of excess changes in the bad portion of the string and is approx-

imately normally distributed with mean zero and variance Npq. Thus the

expected mean rate of improvement (assuming selection throws out those

offspring which are worse than their parents) is roughly f
27r

This suggests that the initial slope of the progress curves should increase

as the number of coordinates increases, or as the product pq increases.

Again, this is observed -- see figures 11 and 12. Note that pq = .09

for PMUTE = .1 and pq = .21 for PMUTE = .3, so the initial slope is higher

when PMUTE = .3.

The fact that the different values of PMUTE lead to different final

values is explained by observing that the expected time to make an improve-

ment is given by 1_ N-1 where M is the number of correct coordinate
(N-M)pq

values. As q increases (or PMUTE decreases), this time decreases. So if

we assume that the progress will appear stopped to the experimenter when

the time until the next improvement exceeds 10,000 evaluations, then we

may compute Vf by

N-l1 4(N-Vf)pqN- 1 10
i-4

V = N- N-
f N-

23

Thus Vf is expected to increase as q increases (or as PMUTE decreases).

Again, this is the case -- see figure 11. Also note that Vf should decrease

relative to N as N increases (for a fixed value of q) -- see figure 13,

and tables 8, 9 and 10.

6) Using both operators together gives better Vf than either operator alone,

especially for small populations. The value of r is lower than for either

alone. The optimal combination of mutation and crossover seems to be half

and half (XPROB = .5). The optimal combination gives r about equal to the

r for mutation only but a better Vf. So it seems that combining the two

operators is one way of beating the trade off between Vf and r. The curves

obtained from using both operators are very similar to the curves for muta-

tion alone, especially with large populations (see figures 8 and 9). Thus

we may hypothesize that mutation is the dominant operator and that adding

crossover, or increasing the population size, or using constant selection

somehow improves the density of good points (those which yield an improvement)

in the space being searched by the mutation operator. If we suppose that

the actual number of coordinates which can be effectively tested is increased,

then we have
Nef

M(n) = (M0-Nef)e-npqef + Nef

as the progress curve and using other operators makes Nef larger. This

should have the effect of increasing Vf since

Vf = Nef - 10 - 4

pNef

and decreasing r since r = pqNe f . Hence we have a trade off between Vf

and r.

24

It also seems that the mutation operator is the source of population

variability. Based on this hypothesis, we predict that the variance in

function-value should be proportional to the product (1 - XPROB)* PMUTE.

That is, the percentage of alleles undergoing mutation during each cycle

should be the source of the variance in the function value. This does

seem to be approximately correct -- see Table 11.

TABLES AND FIGURES

25

26

Crossover operator only -- no mutation

Standard function on 10 coordinates; optimal value is 165

Number of evaluations to Final value
Population reach final value of: of function Final variance

Size SPROB function variance (statistic 1) (statistic 3)

10 1 100 180 155 0.
10-20 0 160 260 159 0.

30 1 220 980 163 0.
30-60 0 340 1820 164.6 0.

50 1 360 2180 165 0.
50-98 0 300 4500 165 0.

TABLE 1

Crossover operator only -- no mutation

Standard function on 30 coordinates; optimal value is 1395

Number of evaluations to Final value
Population reach final value of: of function Final variance

Size SPROB function variance (statistic 1) (statistic 3)

10 1 120 200 1198 0.
10-20 0 220 420 1215 0.

30 1 620 1940 1308 0.
30-60 0 1500 4980 1319 0.

50 1 1220 3420 1356 0.
50-98 0 1680 9140 1338 0.

TABLE 2

Crossover operator only -- no mutation

Standard function on 50 coordinates; optimal value is 3825

Number of evaluations to Final value
Population reach final value of: of function Final variance

Size SPROB function variance (statistic 1) (statistic 3)

10 1 150 275 3048 0.
10-20 0 200 520 3160 0.

30 1 1060 2500 3311 0.
30-60 0 1700 5160 3378 0.

50 1 2860 6540 3580 0.
50-98 0 3760 9500 3515 0.

TABLE 3

27

Crossover and Mutation operators

Standard function on 10 coordinates. Population of 10 strings,
initially, allowed to double before selection.

XPROB PMUTE Initial deviation Final deviation Average deviation

1.0 --- 17.5 0.00 0.71*
0.9 0.1 17.9 0.70 4.32
0.9 0.3 20.8 7.07 7.75
0.9 0.5 19.4 14.4 9.93
0.7 0.1 18.0 13.6 8.43
0.7 0.3 20.8 17.1 16.4
0.7 0.5 19.4 11.9 18.6
0.5 0.1 17.9 17.0 11.1
0.5 0.3 17.9 21.5 18.1
0.5 0.5 17.9 22.5 23.6
0.0 0.1 18.0 22.8 17.8
0.0 0.3 18.0 25.2 21.3

TABLE 4

Population variability vs. trossover and mutation rates

* This value is misleading. In the case of no mutation, the deviation
quickly drops to zero (after 300 evaluations in this case) and remains
there. The average, thus, depends on how many evaluations are made before
stopping the experiment C4000 evaluations for the experiments in this table).

Crossover and Mutation operators

Standard function on 10 coordinates -- optimal value is 165. Population of
10 strings, initially, allowed to double before selection. "Best with best"

crossover method.

Final Number of evaluations needed to reach:
XPROB PMUTE function value final value 98% of final value

1.0 --- 159 160 160
0.9 0.1 165 267 167
0.9 0.3 165 467 400
0.9 0.5 165 333 333
0.7 0.1 165 233 200
0.7 0.3 165 267 267
0.7 0.5 165 233 200
0.5 0.1 165 167 167
0.5 0.3 165 200 167
0.5 0.5 165 200 133
0.0 0.1 165 267 233
0.0 0.3 165 500 200

'FABLE 5

Performance as a function of the parameters XPROB and PMUTE

28

Crossover and Mutation operators

Standard function on 30 coordinates -- optimal value is 1395. Population of
10 strings, initially, allowed to double before selection. "Best with best"

crossover method.

Final Number of evaluations needed to reach:
XPROB PMUTE function value final value 98% of final value

1.0 --- 1215 220 220
0.9 0.1 1382 1967 967
0.9 0.3 1371 2533 1067
0.9 0.5 1351 2600 1767
0.7 0.1 1385 1867 1367
0.7 0.3 1382 2067 833
0.7 0.5 1327 1200 600
0.5 0.05 1395 1667 1400
0.5 0.1 1392 1933 1100
0.5 0.2 1389 2000 1167
0.5 0.3 1380 3600 3500
0.5 0.5 1378 5400 3433
0.1 0.1 1358 1500 767
0.1 0.3 1276 1767 767
0.1 0.5 1312 4733 2533
0.0 0.1 1377 1333 967
0.0 0.3 1277 i000 500
0.0 0.5 1244 633 633

TABLE 6

Performance as a function of the parameters XPROB and PMUTE

Crossover and Mutation operators

Standard function on 50 coordinates -- optimal value is 3825. Population of
10 strings, initially, allowed to double before selection. "Best with best"

crossover method.

Final Number of evaluations needed to reach:
XPROB PMUTE function value final value 98% of final value

1.0 --- 3160 200 200
0.9 0.1 3724 3733 2500
0.9 0.3 3703 3600 2000
0.9 0.5 3624 3533 2267
0.7 0.1 3755 2933 2400
0.7 0.3 3696 7200 4833
0.7 0.5 3677 4300 3233
0.5 0.05 3694 2067 1533
0.5 0.1 3767 2400 1333.
0.5 0.2 3698 4733 1233
0.5 0.3 3534 1733 1500
0.5 0.5 3553 2333 1733
0.1 0.1 3516 2433 1033
0.1 0.3 3309 1667 767
0.1 0.5 3240 1700 800
0.0 0.1 3610 3867 1400
0.0 0.3 3315 733 633
0.0 0.5 3248 1933 700

TABLE 7

Performance as a function of the parameters XPROB and PMUTE.

Mutation operator only

Standard function on 10 coordinates -- optimal value is 165. Population size
allowed to double between selections.

Population Final Number of evaluations needed to reach:
Size PMUTE function value final value 98% of final value

10-20 .1 165 267 233
10-20 .3 165 500 200
30-60 .1 165 533 467
30-60 .3 165 300 267

Population
Size PMUTE Initial deviation Final deviation Average deviation

10-20 .1 18.0 22.8 17.8
10-20 .3 18.0 25.2 21.3
30-60 .1 17.1 19.5 17.3
30-60 .3 17.1 22.2 20.5

TABLE 8

Performance and population variability using Mutation only.

30

Mutation operator only.

Standard function on 30 coordinates -- optimal value is 1395. Population
allowed to double in size between selections.

Population Final Number of evaluations needed to reach:
Size PMUTE function value final value 98% of final value

10-20 .1 1377 1333 967
10-20 .3 1277 1000 500
10-20 .5 1316 4733 2533
30-60 .1 1380 4000 3100
30-60 .3 1276 1533 1400

Population
Size PMUTE Initial deviation Final deviation Average deviation

10-20 .1 90.2 163 121
10-20 .3 90.2 140 125
10-20 .5 82.2 137 123
30-60 .1 96.8 134 114
30-60 .3 96.9 103 106

TABLE 9

Performance and population variability using Mutation only.

Mutation operator only

Standard function on 50 coordinates -- optimal value is 3825. Population
allowed to double in size between selections.

Population Final Number of evaluations needed to reach:
Size PMUTE function value final value 98% of final value

10-20 .1 3610 3867 1400
10-20 .3 3315 733 633
10-20 .5 3240 1700 800
30-60 .1 3699 6233 4200
30-60 .3 3338 4333 1067

Population
Size PMUTE Initial deviation Final deviation Average deviation

10-20 .1 171 266 290
10-20 .3 171 245 274
10-20 .5 171 254 274
30-60 .1 189 290 276
30-60 .3 189 245 234

TABLE 10

Performance and population variability using Mutation only.

31

Crossover and Mutation operators

Standard function on 10 coordinates; Population of 10-20 strings.

average deviation

1 - XPROB PMUTE Average deviation V (1-XPROB) CPMUTE)

.1 .1 4.32 43.2

.1 .3 7.75 44.6

.1 .5 9.93 43.2

.3 .1 8.43 48.5

.3 .3 16.4 54.6

.3 .5 18.6 48.0

.5 .1 11.1 49.5

.5 .3 18.1 46.6

.5 .5 23.6 47.2
1.0 .1 17.8 38.9
1.0 .3 21.3 56.2

TABLE 11

Population variability is roughly proportional to (l-XPROB) (PMUTE).

Crossover and Mutation operators

Population of 30 strings, initially, selection either constant or minimal.
XPROB = .5 throughout.

Final Time to reach
PMUTE SPROB function value Average deviation final value

.1 1 165 9.8 367
.1 0 165 13.5 367
.3 1 165 15.2 267
.3 0 165 18.5 367

Standard function on 10 coordinates.

.1 1 1395 79.4 2767

.1 0 1391 95.2 5400

.3 1 1395 124 4333

.3 0 1389 123 7400

Standard function on 30 coordinates.

.1 1 3825 206 8467

.1 0 3793 232 11100

.3 1 3647 257 11167

.3 0 3736 313 8900

Standard function on 50 coordinates.

TABLE 12

Effect of selection with both operators.

32

Wood's Function

Optimal value is 0. 400 alleles. Minimal selection

Population Final
Size XPROB PMUTE MATER function value Final variance*

10-20 0 .5 -- - 2.17 182
50-98 0 .5 -- - 3.36 944
10-20 .5 .5 1 - 6.02 727
50-98 .5 .5 1 - 3.36 980
10-20 .5 .5 2 - .959 164
50-98 .5 .5 2 - .942 771
10-20 1.0 -- 1 -16.1 393
50-98e 1.0 -- 1 - 6.60 1989
10-20" 1.0 -- 2 -18.0 123
50-98 1.0 -- 2 - 2.94 844

TABLE 13

Performance and variability on Wood's function.

* The final variance is indicative of the average Variance since the value
of this statistic did not vary very much during an experiment.

33

dotted lines for larger population (NSTR = 50)
solid lines for smaller population (NSTR = 10)

b >oo

> aE

H-

number of function evaluations

FIGURE 1

dotted lines for larger population (NSTR = 50)

solid lines for smaller population (NSTR = 30)

3825 (best possible)

" ---- %00

-SPRoB

1000 2000 300 4000
number of function evaluations

FIGURE 2

34

o dotted curve is best value (statistic 1)
solid curve is average value (statistic 2)

number of function evaluations

FIGURE 3

Typical set of 3 runs on Wood's function

0.H

number of function evaluations

FIGURE 4

~~p~ f o R M 4 IC .E C t P V - Sm TP JrF P-P- F Ld4N CT I'O / O N ci-4 C o o r b W A , T

1O ! ~t(SI-Duv SIE&PS SELCT/ON

30 STRJ1NJS, COINSArTSLCIi'

tooo -Q
12 0 0 va o Lo OOOO4

o

1.0

?.KoRMA'AJE CtRVES: ?rATL _______

Ip L 7

I oJTtATSCL FAeTI A/

ZODO 3 ooo qo 000c 500 '60 OO

\~ARIAf LI T Cu RVES. CRoSSovER. OL, -

0 L

A i

S* . -4

.- i- ' - . .

- - . " .

, 7 "4

-J-

I Co . ,-_ .

OO o oo 1ooL zo o 0000loo 3200 No ooo0

PE oA~zNQ~CO1V - STANOR) Fmc7-p' ,oN o%,pROAT~ES

QVOSSOVF-P ONLY

L40 001ZO (0 700o 00 -2 -6 0 0 3&00QO0

m---; t4AT.tJ,.

l~of

2._

Icqoo
Uo1-0700 0 3,0a'

00- .

SI I

\coo Zooo 3000 HO00 ooo 6000 7000 oo i00,

)))
&-L 2' : ----

PUto&mANtCG CUZP-S LUTIVT.W o OLY po pA $i-0Tioj OF mO- ZO

40. It* --. -

PM ur E=3

goo 1200 0L00 2.O L)400 1260q0

PEPoPMANC.E- Cu4RY-S - % OF' FiNAL vALUE: I _TI

- " = - .. " - t - 3 . ,,-.-t .
7. -74t-7 "-- -F F-

7.r

.LTI~ 4 ' ~

0, A r

.2Q,044WTES

400 S oo 17-0 J boo zo Z o 0 Z.H 00 Z oo 0o 3b o0 0 o

__ - ~~PoPUL%~AQN? O- I)-aZo S-rINJ~J~s ~ /C

?SOMAN~CI C l - M LA-1A TI or osv~ IV ~ 7 1-/4

OZ~~~ 4-M~ VAUE-14.

~CIATwR fS. GI1TE FoR. 3a CooAI AM'E

~~1T C4 A D Io N,4:l itiqr

400 too 1700 160zo*240-ZfQo3

References:

Bosworth, J.L. and N.Y. Foo and B.P. Zeigler, "Comparison of Genetic
Algorithms with Conjugate Gradient Methods", NASA Contractor Report
No. 2093, NASA, Washington, D.C. August, 1972.

Foo, N.Y. and J.L. Bosworth, "Algebraic, Geometric and Stochastic Aspects
of Genetic Operators", The University of Michigan, Computer & Communica-
tions Sciences Report No. 003120-2-T, March, 1972.

Holland, J.H., "Genetic Algorithms and the Optimal Allocation of Trials",
SIAM J. Comput. June 1973.

Zeigler, B.P. and J.L. Bosworth and A.D. Bethke, "Noisy Function Optimization
by Genetic Algorithms", The University of Michigan, Computer 9 Commun-
ications Sciences Report No. 143, March, 1973.

44

